ON THE LOGIC OF TLA + Stephan Merz

نویسندگان

  • Stephan Merz
  • S. Merz
چکیده

TLA+ is a language intended for the high-level specification of reactive, distributed, and in particular asynchronous systems. Combining the linear-time temporal logic TLA and classical set-theory, it provides an expressive specification formalism and supports assertional verification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Logic of TLA+

TLA+ is a language intended for the high-level specification of reactive, distributed, and in particular asynchronous systems. Combining the linear-time temporal logic TLA and classical set-theory, it provides an expressive specification formalism and supports assertional verification.

متن کامل

Animating TLA Specifications

TLA (the Temporal Logic of Actions) is a linear temporal logic for specifying and reasoning about reactive systems. We define a subset of TLA whose formulas are amenable to validation by animation, with the intent to facilitate the communication between domain and solution experts in the design of reactive systems.

متن کامل

Encoding TLA+ set theory into many-sorted first-order logic

We present an encoding of Zermelo-Fraenkel set theory into many-sorted first-order logic, the input language of state-of-the-art smt solvers. This translation is the main component of a back-end prover based on smt solvers in the TLA Proof System.

متن کامل

TLA + Proofs

TLA is a specification language based on standard set theory and temporal logic that has constructs for hierarchical proofs. We describe how to write TLA proofs and check them with TLAPS, the TLA Proof System. We use Peterson’s mutual exclusion algorithm as a simple example to describe the features of TLAPS and show how it and the Toolbox (an IDE for TLA) help users to manage large, complex pro...

متن کامل

A More Complete TLA

This paper defines a generalization of Lamport’s Temporal Logic of Actions. We prove that our logic is stuttering-invariant and give an axiomatization of its propositional fragment. We also show that standard TLA is as expressive as our extension once quantification over flexible propositions is added.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003